Late G. N. Sapkal College of Engineering Kalyani Hills, Anjaneri, Trimbakeshwar Road, Nashik – 422 213 #### **Department of Mechanical Engineering** #### **Course Outcomes** | Academic
Year | Name of Course | Course
Code | Course Outcome | | |------------------------|--|----------------|-----------------|---| | ME (2017
Course) | Advanced
Mathematics | 507201 | CO
507201.1 | To apply concept of Inner Products & Orthogonal Projections | | | | | CO
507201.2 | To apply concept of Complex Variables & Complex Differentiation | | | | | CO
507201.3 | To deal with concept of Transforms & Applications of Transform. | | | | | CO
507201.4 | Understand concept of differential equation & its application in Mechanical Engineering. | | | | | CO
507201.5 | Understand Concept of boundary value problem, Wave equation & Laplace equation. | | | | | CO
507201.6 | Use of various Methods to solve differential equation of higher order. | | | Material Science
and Mechanical
Behavior of
Materials | 502202 | CO1
502202.1 | Compare and select modern Materials in Design Engineering for various applications | | | | | CO1
502202.2 | Evaluate response of metals and alloys to applied load | | ME (2017 | | | CO1
502202.3 | Compute the stress, strain and temperature rise for various tests under complex loading | | Course) | | | CO1
502202.4 | Analyze plastic behavior for different loading conditions | | | | | CO1
502202.5 | Understand Elastic-Plastic equilibrium under variable loading | | | | | CO1
502202.6 | Interpret Elasto-Visco-Plasticity
models, rubber elasticity, damping,
yielding and effect of strain rate | | ME
(2017
Course) | Advanced Stress
Analysis | 502203 | CO1
502203.1 | Understand the fundamental principles and theories underlying advanced stress analysis techniques. | | | | | CO1
502203.2 | Apply mathematical and computational methods to analyze stress and deformation in complex engineering structures. | | | | | CO1
502203.3 | Analyze and interpret stress distributions under various loading | # Late G. N. Sapkal College of Engineering | | | | | conditions including static, | |------------------------|--|----------|-------------------------------------|---------------------------------------| | | | | | dynamic, and thermal loads. | | | | | | · | | 1 | | | CO1 | Evaluate the performance and safety | | | | | CO1 | of engineering components and | | | | 502203.4 | structures based on stress analysis | | | | | | | results. | | | | | | Utilize advanced stress analysis | | | | | CO1
502203.5 | techniques to optimize the design of | | | | | | engineering systems and | | | | | | components for enhanced | | | | | | performance and reliability. | | | | | | Demonstrate proficiency in using | | | | | CO1 | software tools for finite element | | | | | 502203.6 | analysis (FEA) and other numerical | | | | | | methods for stress analysis. | | | | | CO1 | Understand basic concepts of | | | | | 502204.1 | research and its methodologies. | | | | | CO1 | Select and define appropriate | | | | | 502204.2 | research problem and parameters. | | | | | | Understand and apply research | | | | | CO1 | approaches, to design mathematical | | ME (2017 | Research | | 502204.3 | model. | | Course) | Methodology | 502204 | | Able to use instrumentation schemes | | Course) | Wicthodology | | CO1 | for data collection and experimental | | | | 502205 | 502204.4 | _ | | | | | CO1 | Setup. Design the use of major | | | | | 502204.5 | | | | | | CO1 | experimental methods for research. | | | | | 502204.6 | Write a research report and thesis. | | | | | | Ability to define project objectives, | | | "Elective I ME2I – M4 Project Management" Elective I ME2I – M6 Operation Management | | CO1
502205.1 | requirements, and constraints | | | | | | clearly. | | | | | | To study the various aspects of | | | | | CO1
502205.2 | project management, including | | | | | | technical design, financing, | | | | | | | | ME
(2017
Course) | | | 302203.2 | contracting, implementation, | | | | | | performance monitoring, and | | | | | | measurement and verification. | | | | | | Understanding the importance and | | | | | CO1 | fundamentals of operation | | | | | 502205.3 | management, including operating | | | | | | system models and key decision- | | | | | | making processes. | | | | | CO1
502205.4 | Proficiency in strategic planning and | | | | | | control methods, incorporating | | | | | | technology and knowledge | | | | | | management for effective | | | | | | operations. | ## Late G. N. Sapkal College of Engineering | | | | CO1
502205.5 | Knowledge of supply chain and network approaches, as well as strategies for quality management and risk mitigation. | |------------------------|---|--------|-----------------|--| | | | | CO1
502205.6 | Awareness of challenges, opportunities, and methods for achieving operational excellence and sustainability, illustrated through relevant case studies. | | | Elective I ME1I – M11 Environmental Pollution and Control | | CO1
502205.7 | To Study the Environmental and Pollution control ethics, regulation for mobiles and its hazardous and economic impact. | | | Analysis and Synthesis of Mechanisms | 502207 | CO1
502207.1 | Examine the fundamentals of kinematics to compute velocity and acceleration analysis of simple mechanisms | | | | | CO1
502207.2 | Analyze velocity-acceleration of complex mechanisms by the Normal Acceleration method and Auxiliary Point Method | | ME
(2017 | | | CO1
502207.3 | Understand Curvature theory with
the help of Euler-Savary equation,
Bobillier constructions and cubic of
stationary curvature | | Course) | | | CO1
502207.4 | Synthesize the mechanism for function generation and rigid body guidance using Relative pole method & Inversion method | | | | | CO1
502207.5 | Synthesis planar mechanisms for four accuracy points using different methods | | | | | CO1
502207.6 | Analyze kinematics of Spatial
Mechanisms using matrix method
and Denavit-Hartenberg
parameters | | ME
(2017
Course) | Advanced
Mechanical
Vibrations | 502208 | CO1
502208.1 | Understanding of Vibrational
Systems: Students will gain a deep
understanding of mechanical
vibration concepts. | | | | | CO1
502208.2 | Analysis and Prediction of Vibration
Characteristics: Students will be
able to analyze and predict the
characteristics of mechanical
vibrations. | ## Late G. N. Sapkal College of Engineering | ` | | <u></u> | | | |------------------------|-----------------------------|---------|-----------------|---| | | | | CO1
502208.3 | Application of Advanced Vibration Analysis Techniques: Through | | | | | CO1
502208.4 | hands-on exercises and projects. Design and Optimization for Vibration Control: Students will learn techniques for designing and optimizing mechanical systems to control and mitigate vibration effects. | | | | | CO1
502208.5 | Assessment of Vibrational Effects on Structural Integrity: Students will understand the impact of mechanical vibrations on the structural integrity of engineering components and systems | | | | | CO1
502208.6 | Integration of Vibration Analysis with Engineering Design: Students will integrate vibration analysis methodologies into the engineering design process. | | ME
(2017
Course) | (2017 Finite Element Method | 502209 | CO1
502209.1 | Derive and use 1-D and 2-D element stiffness matrices and load vectors from various methods to solve for displacements and stresses. | | | | | CO1
502209.2 | Apply mechanics of materials and machine design topics to provide preliminary results used for testing the reasonableness of finite element results. | | | | | CO1
502209.3 | Explain the inner workings of a finite element code for linear stress, displacement, temperature and modal analysis. | | | | | CO1
502209.4 | Use professional-level finite element software to solve engineering problems in solid Mechanics | | | | | CO1
502209.5 | Interpret the results of finite element analyses and make an assessment of the results in terms of modeling (physics assumptions) errors, discretization (mesh density and refinement toward convergence) errors, and numerical (round-off) errors. | | | | | CO1
502209.6 | Solve real life mechanical engineering problems | ## Late G. N. Sapkal College of Engineering | | | 502210 | CO1 | To study types, benefits and | |---------|---|--------|-----------------|--| | ME | Elective II
DE2II-M5
Mechanics of
Composites | | 502210.1 | application of Composite Materials | | | | | CO1 | To study Mechanical behavior of | | | | | 502210.2 | Lamina of composite materials | | | | | CO1 | To study Mechanical behavior of | | | | | 502210.3 | Laminate composite materials | | | Elective II
DE2II-M7 | | CO1 | Study the Basics concepts of | | | | | 5022104 | acoustics and its measurement technics. | | (2017 | | | CO1 | To study Transmission of sound | | Course) | Acoustics and | | 502210.5 | with various variable equations. | | | Noise Control - I | | CO1 | To study Acoustic Criteria related to | | | | | 502210.6 | human beings. | | | | | CO1 | To study basic concept of | | | Elective II | | 502210.7 | Manipulator Kinematics | | | DE2II-M12 | | CO1 | To study Robotics Dynamics | | | Robotics | | 502210.8 | • | | | | | CO1 | To study and Apply Trajectory | | | | 502212 | 502210.9 | Planning | | | Optimization
Techniques | 502213 | CO1
502213.1 | Formulate Linear Programming Problems (LPP) for constrained and | | | | | | unconstrained optimization. | | | | | CO1
502213.2 | Solve nonlinear single variable | | | | | | optimization problems where | | | | | | objective function and/or constraints | | | | | | are not stated as explicit functions of | | | | | | the design variables or are | | | | | | complicated to manipulate. | | | | | CO1
502213.3 | Optimize nonlinear multivariable | | | | | | and constrained optimization | | | | | | problems where objective function and/or constraints are not stated as | | ME | | | | explicit functions of the design | | (2017 | | | | variables. | | Course) | | | | Use modern methods of | | | | | CO1
502213.4 | optimization to solve nonlinear | | | | | | single variable and multivariable | | | | | | optimization problems where | | | | | | objective function are complicated | | | | | | to manipulate. | | | | | CO1
502213.5 | Aware of nontraditional methods of | | | | | | optimization to optimize nonlinear | | | | | | single variable and multivariable optimization problems. | | | | | | Formulate Linear Programming | | | | | CO1
502213.6 | Problems (LPP) for constrained and | | | | | | unconstrained optimization. | | | | | | unconstrained optimization. | # Late G. N. Sapkal College of Engineering | | | | CO1 | To study the fundamental principles behind measurement techniques used in mechanical engineering, | |------------------|---|--------|-----------------|---| | ME
(2017 | Mechanical
Measurements
and Controls | 502214 | 502214.1 | including concepts like accuracy, precision, calibration, and error analysis. | | | | | CO1
502214.2 | To study Fundamentals of interfacing of sensors with Microcontroller/computer | | Course) | and Controls | | CO1
502214.3 | To study mathematical Modelling of Mechatronics Systems. | | | | | CO1
502214.4 | To study and plot Transient response of electromechanical and mechanical system using time domain. | | | | | CO1
502214.5 | To study and plot Transient response of electromechanical and mechanical system using frequency domain. | | | Elective III
DE2III-M7
Industrial
Tribology – I" | 502215 | CO1
502215.1 | To apply the design concept in surface friction, wear and lubrications about frictional behavior. | | | | | CO1
502215.2 | To know about properties of lubricants, modes of lubrication, additives etc. | | ME | | | CO1
502215.3 | To study the design concept in hydrostatic lubrications. | | (2017
Course) | Elective III
DE2III-M8
Industrial
Tribology – II | | CO1
502215.4 | To study the design concept in elasto-hydrodynamic lubrications. | | | | | CO1
502215.5 | To study hydrostatic, hydrodynamic and thrust bearings with air lubrication | | | | | CO1
502215.6 | To study Tribological aspects of rolling motion. | | | Elective III DE1III-M9 - Reliability Engineering | | CO1
502215.7 | To study, Design and Analyse different techniques of ANOVA, factorial design and regression Analysis of various manufacturing products. |